Telefonix PDT:
Telefonix PDT(TM) announced that they now have an STC for Boeing 737NG – 700, 800 & 900 aircraft types for both the CabinPinnacle(TM) server and CabinACe(TM)wireless access point. The STC was just awarded prior to APEX in Singapore, and we understand that Kaiser Charter was the first installation completed in October. This STC represents the first phase of certifications and it is our understanding that phase 2 will include the CabinEdge(TM) content loader. The content loader works while the aircraft is in service and data is trickled, loading into shadow memory, and eventually ending up in the operational memory as the update is installed. Telefonix PDT is also working on garnering a similar STC for the A320 aircraft family. The STC/PMA was strategically planned to grow the company’s customer base for the 737 in the Asia region. The airlines have the data rights to use the system, with the hardware being sold, not leased. Lest you forget, Telefonix(TM) has had a long standing relationship with production in China; and, in 2017, the company has plans to establish a repair station in China, in addition to their current repair station in Waukegan, Illinois. One point that was stressed in our interview at APEX was that Telefonix PDT is not just an equipment provider, but a design and engineering services provider as well. (Editor’s Note: IFExpress has watched Telefonix PDT grow over the past 20+ years and we feel that they have developed excellent, low-cost IFE system components and the China relationships, as well as their involvement with many hardware manufactures within the industry, is proof of this. You should watch this company in the coming year – we think they are going to grow!)
Industry News:
- Panasonic
Have you heard about the Panasonic Blog? We asked Panasonic how it came about and here is what a spokesperson said: “Matthias Walter and Estel Carbo worked very hard on this and have a plan that we thinks helps give more insights into the IFEC landscape.” Matthias Walther, Senior Manager of Integrated Marketing at Panasonic Avionics said, “Marketing these days has many facets. Hard sales has its place in marketing too but in an industry as relationship-driven as ours it’s essential to engage in a dialog that is more about education than promotion, more about solutions than product and more about value than price. Of course we will occasionally talk about us and what we bring to the table but only if we and what we write adds value to the daily lives of our customers will our blog be successful.” Noted Panasonic: “One of the business principles of Panasonic’s founder Knosuke Matsushita describes customer focus always trumping sales concerns. In that spirit our blog intends to drive knowledge, our relationship with our customers and the quality of decision making in one direction, UP.” Check it out here.
Panasonic Weather Solution
Panasonic Avionics Corporation and Safety Line unveiled a strategic partnership that will enable airlines to benefit from significant fuel savings. Panasonic Weather Solutions (PWS) provides Safety Line with enhanced global weather forecast through real-time weather data collection from its TAMDAR sensors and FlightLink Iridium system. TAMDAR data provides observations of wind, temperature, and moisture every five seconds as TAMDAR-equipped aircraft descend and ascend at nearly 300 airports across North America. It also collects about 3,500 profiles each day from several hundred additional airports located in East Asia, the Pacific, and Europe. This data is used by Panasonic’s Forecasting Center of Excellence (FCoE), which develops detailed station-based weather forecasting, as well as enhanced weather forecasting. The process is fully automated from the weather live feed to flight plan analysis and climb schedule issuance to the pilot. Airlines can reduce fuel consumption by up to 10 percent during ascent thanks to OptiClimb’s unique patented solution, which uses a combination of machine learning performance models for each individual aircraft, and the computing of optimized climb profiles issued ahead of each flight.
Also check this link The Connected Aircraft (Part I) – Curating the Internet of Me – UP – Panasonic Avionics Blog if you want to know a bit more about the connected aircraft.
- Inmarsat
We should note that Hawaiian Airlines has experienced the benefits of SwiftBroadband-Safety delivered through Cobham advanced AVIATOR avionics and has now chosen to expand its commitment to high speed broadband in the flight deck with its A321neo. But to see the features that are provided, you must check out this Inmarsat Global Aeronautical Distress and Safety System feature download – this is the future of aviation safety and you need to check it out!
- Boeing
The FAA issued a new rule that forces Boeing 787 operators to periodically shut down and restart airplane power that reboots onboard computers to overcome a glitch that shuts down flight control computers during flight! Finding and fixing this “inconsistency” will be very, very interesting. Stay Tuned!
- Satellite 2017
Be a part of the world’s largest gathering of the international satellite community. Taking place in Washington, D.C. March 6-9, 2017 the SATELLITE 2017 Conference and Exhibition don’t miss this opportunity to hear from executive speakers from commercial airlines, the U.S. Federal Aviation Administration and the U.S. Air Force!
- THE ‘Donald’
Donald Trump says the new Air Force One contract should be cancelled! Perhaps Airbus will make a better offer? Then Boeing put this news release out – Boeing Statement on Air Force One – Dec 6, 2016 Or, you might want to read the following story from Gizmodo – beware there are x-rated words, so watch out!
- Other
If you have been wondering where IoT and cloud computing are going, one answer is ‘physically portable data’. This is going to be one of the markets of the next generation cloud because of security and access as large (and now medium) data portability and cloud interaction become involved. We suspect that the airlines will see value in this if hacking gets any worse Amazon Cloud Gets A Bit More Hybrid This just may be one futures of the medium and big data cloud storage and security.
In-Flight hook-ups now supported with AirDates “This is achieved using Multipeer WiFi between smartphones, eliminating the need to rely upon the Plane’s WiFi network or other connection.” Check it out here – but you might need the Trusted Contacts app as well.
Quick Study: Millennials
While in Singapore, we heard one word over and over – millennial- so we thought after the show we would do the research on who they are and why they are so important to some industries. While this quick bit of data is just a speed read, we think the answers are telling and important to IFEC, especially C (Communications).
First what is a millennial? It is a person ‘reaching young adulthood around the year 2000’ the dictionary said. Noted Goldman Sachs: “The Millennial generation is the largest in US history and as they reach their prime working and spending years, their impact on the economy is going to be huge. Millennials have come of age during a time of technological change, globalization and economic disruption. That’s given them a different set of behaviors and experiences than their parents.They have been slower to marry and move out on their own, and have shown different attitudes to ownership that have helped spawn what’s being called a ‘sharing economy.’ They’re also the first generation of digital natives, and their affinity for technology helps shape how they shop. They are used to instant access to price comparisons, product information and peer reviews.” Further, a company called iGR interviewed and surveyed millennials to get their views on communication and technology and here is what they said: “As the largest and highly communication-tech-savy generation; they are at the epicenter of our curiosity to drive decision-making for the next wave of innovation in infrastructure. Take note! The most successful service providers over the next 5-10 years will be those who best understand the emerging generations communication behavior, accurately anticipate core service wants and needs, proactively adapt and adjust business strategies, and finally, provide the most relevant solutions and services.” That about says it all and explains why the word ‘millennial’ was so popular in Singapore, especially with those who dealt with communications, connectivity, and cost!
A few months back, we penned a story about one of the most important improvements in inflight connectivity… more specifically, the VT Miltope router called nMAP2 and asked Robert Guidetti , VP/GM Commercial Division of VT Miltope for more data about the technical capability of it and its associated improvements on an aircraft Wi-Fi system, specifically, the increased passenger connectivity performance by using Cognitive Hotspot Technology (CHT). This time, we would like to increase the background on the CHT story and cover a bit more on the 802.11ac technology. If you don’t remember the story, you can find it here . So let’s now continue with some questions whose answers will provide our readers with a bit more technical knowledge about CHT:
1. Bob, first can you give us a quick summary of CHT, including some of the benefits, and tell our readers what products in the industry currently have it?
Cognitive Hotspot(TM) Technology (CHT) optimizes network performance in highly congested wireless environments. As more passengers bring one, or more, Wi-Fi devices onto the airplane, with higher expectations for performance, VT Miltope recognized the need to actively manage the wireless spectrum, the wireless access points (WAPs) and the associated client devices. Although the 2.4 and 5 GHz bands have a finite spectrum, at times the appetite for these bands seems almost insatiable. With the rapid expansion of services such as Video-on-Demand (VoD), e-mail, web surfing, games, and more, the cabin wireless network can become highly congested.
CHT actively monitors the spectrum utilization, the number of Wi-Fi client devices assigned to the network WAPs, what services are being supported, data rate requirements, data utilization, etc. Using the information gathered from real-time monitoring, CHT manages the wireless network, including: client load balancing, band and channel assignments, RF power, client roaming, the data service type (VoD, e-mail, web surfing, games, etc.) and rogue WAP detection. Overall, CHT optimizes the bandwidth available to the Wi-Fi cabin network.
The overarching result of using CHT is to allow an airline to use fewer WAPs, and to increase the overall performance of the wireless cabin network. Therefore, the IFE&C system performs at a higher level, at a lower cost.
VT Miltope’s latest cabin WAP, the nMAP2, embraces CHT as a standard feature set.
2. Why does the “C” in CHT stand for “Cognitive”? Furthermore, would you please note some of the long list of features provided by the nMAP2 with CHT?
The “Cognitive” in Cognitive Hotspot(TM) Technology reminds us that CHT makes a WAP smart. With CHT the VT Miltope nMAP2 WAPs are able to talk to each other, to share information gathered about the wireless environment, and to make intelligent decisions to optimize the wireless network.
- CHT is specifically designed to address the unique challenges of a dense and highly congested wireless environment, e.g. the aircraft cabin. The following summary list provides a smattering of the real-time CHT functions inherent within the nMAP2.
Automatic Channel Assignment (ACA): - Advanced Load Balancing with QoS (ALB)
- Smart Roaming (SR)
- Automatic Failure Recovery (AFR)
- Location-Based Services (LBS)
- Interference Minimizer (IM)
- Advanced User Interface (AUI)
- Dynamic Frequency Selection (DFS) (DFS is on the CHT roadmap)
With these and additional features, the nMAP2 becomes a Cognitive, knowledge gathering and decision making network device.
3. Mr. Guidetti, this is a repeat question but given the various standards (802.11a, b, g, n, and ac) can you again tell our readers what is/are the standard(s) used most often today and please give us a bit of information about the number of available channels and the bandwidth available for each and where this is all headed for fliers in the next few years?
Development of the original IEEE 802.11 standard was started in the early 1990’s with the initial release in 1997, with revision A being released in 1999. As we look at the 802.11a/b/g/n/ac evolution in the table below, we see that most of these revisions were multiple years apart with significant increases in theoretical data rates from 11a and11g, to 11n, to 11ac. Although the actual data rates do not normally match the theoretical data rates (on the ground or in the air), the actual data rate increases have been quite impressive as well.
Today, 802.11n has become commonplace with 802.11ac rapidly becoming the highest performing and dominant Wi-Fi offering, with most portable wireless capable devices (smartphones, tablet computers, etc.) now coming standard with 802.11ac radios.
4. Bob, we understand “the cloud” is an important part of the connectivity solution, can you tell our readers how it plays a part in your connectivity solution?
As airlines adapt cloud computing to the aircraft, the availability of high capacity, reliable wireless networks on the aircraft will play an important role. Having a wireless network that can be scaled to support the increasing utilization and demands of the cloud without having to add more wireless hardware will benefit airlines in multiple ways. nMAP2 with CHT and its ability to assign quality of service criteria to airline prioritized data ideally supports cloud services.
5. Streaming video has become an important part of the connectivity solution today and we wonder if you are seeing increased airline request for more and better data rates, if the CHT technology improves capability to stream video and exactly how does that occur?
Yes, streaming video and content loading are two of the most demanding connectivity applications – streaming video because of its relatively high data rate requirement and that it be nearly error free without error correction, and content loading due to the large amount of data that must be moved within a limited time.
A significant wireless challenge within the airplane cabin is RF congestion with potentially hundreds of client devices competing for connectivity to the network. CHT manages RF channel usage, RF power levels and re-assigns client devices to the correct WAP/nMAP2 to optimize the wireless network performance. Testing with and without CHT has shown a 2-to-1 performance improvement within crowded wireless environments.
6. Given that an airline installs a CHT capable wireless router, can you tell our readers what differences an airline can expect with the technology and typically how many can be served streaming content at one time?
The nMAP2 with CHT performance can allow an airline to use fewer WAP/nMAP2 units per cabin, or to increase performance to more client devices than traditional WAPs. Regarding the number of client devices per nMAP2, this will vary depending upon the airplane cabin configuration, the number of client devices vying for the same RF channels, the QoS requirements, etc.
However, a good rule-of-thumb for 1 Mbps streaming video per nMAP2 radio is: 36 to 54 client devices using the 5 GHz channels and 18 to 36 client devices using the 2.4 GHz channels.
7. Can you tell us a little about the most recent testing (or installations) of the nMAP2 product and the results that you saw?
We are very excited about the nMAP2 – with hundreds of aircraft installations; our customers are finding the on-aircraft performance results and lab test results to be similar. Since CHT is able to manage the wireless network utilizing real-time signal-to-noise (SNR), QoS requirements, RF power measurement and management, and other parameters the nMAP2 with CHT is able to improve performance throughput by up to 400% within highly congested environments.
8. Is there any new technology and/or new products on the horizon that VT Miltope has on the drawing board?
VT Miltope sees two technology opportunities coming. The first his here and is on our roadmap for this coming year, with the second being closely watched. The first is 801.11ac Wave-2. Wave-2 is advancement to the initial roll-out of 802.11ac, with Wave-2 providing the potential to add more clients with faster data rates in crowded environments such as the airplane cabin.
The second opportunity is IEEE 802.11ad, nicknamed WiGig (wireless gigabit). Since the standards’ release in 2012, WiGig has been getting some traction. WiGig is a 60 GHz based RF communication standard targeted at high data rate, short range applications, such as gaming and high performance video. WiGig is being combined with 2.4 and 5 GHz Wi-Fi devices to provide three band options depending upon the user’s needs. The industry is watching the roll-out of WiGig to see how well it is accepted within the consumer electronics market – in other words: when will enough people be carrying WiGig devices onto airplanes to start rolling WiGig into IFE&C systems?
9. Please add any products, services, or new features we have not covered.
VT Miltope’s latest product release is the cTWLU. The cTWLU provides flexible and cost effective wireless communications while an airplane is on the ground. Utilizing 3G Cellular, LTE and 802.11a/b/g/n & ac, the cTWLU is used to load IFE content, to load EFB data and to move maintenance data from the airplane to an airlines’ data center. The cTWLU is a much lower cost alternative to satellite communications, and satellite coverage is often spotty when an airplane is on the ground.
VT Miltope’s latest cabin WAP, the nMAP2, embraces CHT as a standard feature set. Soon VT Miltope’s latest wireless product, the cTWLU, will also harness the power of CHT. The cTWLU is an LTE, Cellular and 802.11a/b/g/n & ac enabled wireless Gatelink device for airplane to airport surface communications.
10. Also, any new or other changes we can note… such as people or customers we should mention?
The nMAPw is also incredible.
Unfortunately, most of our customers request anonymity. However, please come by our booth at APEX (Booth #1717 ) in Singapore and we can answer other questions you might have about the incredible cTWLU and nMAP2!
Other News:
IFPL
Seat integration is now a major game changer in the realm of in-flight entertainment and seat design. Rising to these challenges, IFPL has designed a new concept – a unique range of remote multi-port solutions that provide the airline, seat vendor and IFEC supplier with complete flexibility to integrate and combine design aesthetics with ergonomics. IFPL’s unique multi-port range allows airlines, seat and IFEC suppliers the ability to deliver maximum seat integration, creating an accessible and seamless design aesthetic. With flexibility at the core, IFPL have designed a multi-port range that provides options for customization such as: front or rear mounted, fascia material and color, soft light guide color and intensity An ingenious design, this new type of Multiport Jack offers airlines around the world the flexibility of choosing from a variety of easy to replace modules. These include a variety of audio Jacks, different types of USB outlets and a collection of wireless interface options with functions such as reading lights and passenger control buttons. The Multiport Range is available in a number of size (port) options to facilitate clean and neat integration including 2, 3 and 4 port solutions. To provide even more flexibility, IFPL is taking the same approach with its 110V A/C and USB-C 3.1 power outlets. Committed to working with industry partners and customers across the globe, IFPL strives to deliver a seamlessly integrated passenger in-flight journey, turning the mundane into a more enhanced experience.
Ideas Roadshow:
We received a last minute input from Irina at Ideasroadshow – “Here is the link on our YouTube channel. I am also sending you a link to the Motivational Moments playlist on our IFE YouTube channel. (Editor’s Note: This is good stuff and thanks for sharing it with our readers!)
Singapore:
Singapore Uber Deal – Download the Uber app and register for an account. You’ll have the option to input your credit card or opt for cash payment. To enjoy a $15 FREE ride, simply enter the code “IFEXPRESS” into the Promotions tab! The code is valid until 31 October 2016.
Boulder, CO | February 25, 2015– VT Miltope has started delivering an IEEE 802.11ac Multifunction Access Point (nMAP2) as its latest wireless product. nMAP2 builds upon the success of VT Miltope’s wireless access point products. nMAP2 features Cognitive Hotspot Technology (CHT), an integrated MIMO antenna assembly and has a second radio to support legacy 802.11n client devices. Cognitive Hotspot Technology, exclusive to the nMAP2, is a state-of-the-art wireless network management solution, developed specifically to improve the performance of wireless systems in aircraft cabins. Aircraft cabins are becoming congested through increasing numbers of passengers, passenger devices and types of services available to enable passengers and crews.
With CHT, nMAP2’s provide proactive cabin network management to optimize the total network capacity, thus supporting a substantially better passenger experience. CHT features various dynamically and automatically adapting modules such as intelligent roaming, wireless power control, channel assignment, load balancing, and interference minimization. These modules are customized according to each airline’s service and content delivery requirements and priorities.
nMAP2 with CHT constitutes a paradigm shift in wireless cabin networks. Adding more access points, the option of the past, in a confined aircraft cabin only leads to more interference. CHT manages the entire cabin wireless traffic and its delivery points more effectively, thus increasing total capacity and optimizing your passenger experience.
Pioneering the introduction of wireless access point technology to aircraft cabins since 2001, VT Miltope has a proven history for delivering highly reliable wireless products. Improving on our current nMAP, nMAP2 incorporates the latest in wireless security, is more compact, weighs less further enhances reliability, and reduces overall ship set costs.
We are delighted to announce that our efforts to improve the passenger experience has also afforded us an award for “Innovations in commercial airline cabins” as part of the Inflight Magazine Awards, publicized during the recent Aircraft Interiors Middle East in Dubai.